MITSUBISHI <CONTROL / DRIVER IC>

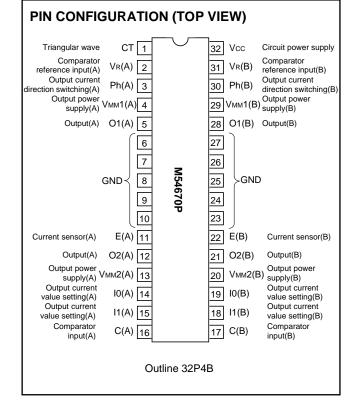
M54670P

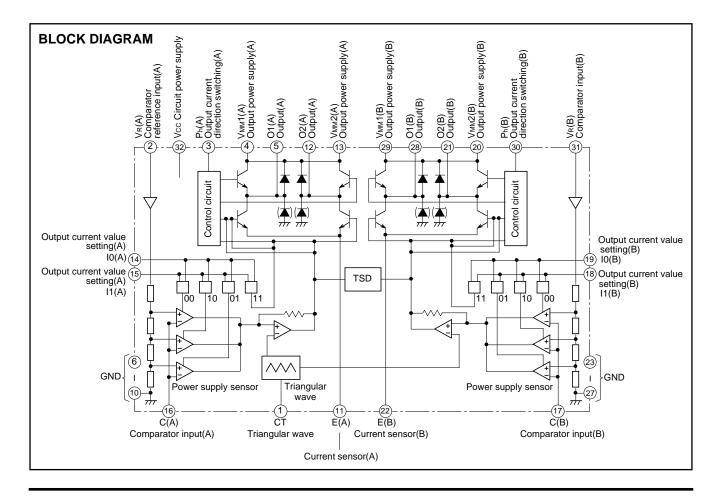
2-PHASE STEPPER MOTOR DRIVER

DESCRIPTION

The M54670P is a semiconductor IC to drive a bipolar stepper motor directly by controlling the coil current with the constant current method.

FEATURES


- Wide operating voltage range (10 35V)
- Wide output current control range (20 800mA)
- Bipolar and constant current drive
- Built in flywheel
- Current level can be changed by steps or continuously.
- Built in a thermal shutdown circuit


APPLICATION

Office automation equipment such as printer, FDD, HDD, and FAX

FUNCTION

The M54670P can drive a stepper motor by the 2-phase bipolar method and also control the coil current. Furthermore, it controls the direction of the coil current with Ph input pins (pins 3 and 30). The coil current value can be selected among four levels (0 to max.) by selecting the combination of three internal comparators by logic input (pins 14, 15, 18 and 19). It also can be continuously controlled with VR pins (pins 2 and 31). By selecting an I input pin among pins 14, 15, 18 or 19, the operation timing, 2-phase excitation, 1-2-phase excitation or microstep, can be selected. Because two control circuits are built in this IC, a stepper motor can be driven with a single IC by the 2-phase bipolar method.

2-PHASE STEPPER MOTOR DRIVER

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 - 7	V
Vмм	Output supply voltage		-0.3 - 40	V
VI	Logic circuit input voltage		-0.3 - 6	V
Vc	Comparator input voltage		Vcc	V
Vr	Reference input voltage		7	V
lo	Output current		±1.0	A
Pd	Allowable power dissipation	Mounted on a board	1.92	W
Topr	Operating temperature		-20 – 75	°C
Tstg	Storage temperature		-55 – 125	°C

RECOMMENDED OPERATING CONDITIONS (Vcc=5.0V, Ta=25°C, unless otherwise noted)

Symbol	Parameter		Unit			
Symbol	Faidilietei	Min.	Тур.	Max.	Unit	
Vcc	Supply voltage	4.75	5.00	5.25	V	
Vмм	Output supply voltage	10		35	V	
VR	Reference input voltage	0	—	5	V	
lo	Output current	20		800	mA	
t PLH	Logic input rise time			2.0	μs	
t PHL	Logic input fall time			2.0	μs	
TON	Thermal shutdown temperature *		175		°C	

* : Refer to "PRECAUTIONS FOR USE."

ELECTRICAL CHARACTERISTICS (Vcc=5.0V, VMM=10V, Ta=25°C, unless otherwise noted)

Symbol	Parameter		Test conditions	Limits			Unit
Symbol	Falameter				Тур.	Max.	Unit
Viн	Logic input voltage	"H"		2.0	—	Vcc	V
VIL		"L"	Vcc=5V	0	—	0.8	V
Vсн			VR=5V, I0=I1=0	430	460	480	mV
Vсм	Comparator threshold		VR=5V, I0=1, I1=0	265	285	305	mV
VCL			VR=5V, I0=0, I1=1	90	110	130	mV
Ico	Comparator input current		Io=I1=1(Ta=25°C)	-20	-2	20	μΑ
IOFF	Output cutoff current			-	0	100	μΑ
Vsat	Saturation voltage		Voltage at sensing resistor is not included. Io=500mA	-	3.0	4.5	V
fc	PWM oscillator frequency		Vмм=10V, Cf=3900pF	16.5	33	66	kHz
td	Turn-off delay		Ta=25°C, dV/dt≥50mV/μs	-	1.0	2.0	μs
Icc	Supply current		Vcc=5V	-	8.0	25	mA
ШΗ	Logic input current	"H"	VI=2.4V	-	180	400	μΑ
lı∟		"L"	VI=0.4V	—	20	50	μΑ

M54670P

2-PHASE STEPPER MOTOR DRIVER

APPLICATION DESCRIPTION

(1) PHASE INPUT

Phase input decides the output mode.

PHASE	O1	O2
Н	L	Н
L	Н	L

(2) Io, I1

Io and I1 fixed based on the comparative voltage VR decide the output current level.

lo	l1	Current level
Н	Н	0
L	Н	Low
н	L	Тур
L	L	High

(3) VR (Comparative voltage)

The current level can be continuously changed by changing the voltage at $\mathsf{V}\mathsf{R}$ continuously.

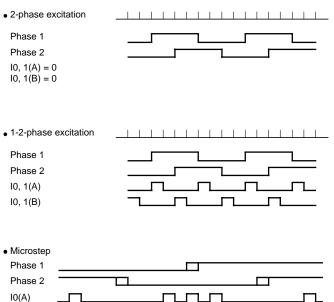
(4) Current sensor

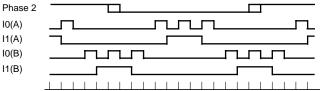
When the voltage fall at the current sensing resistor and the selected current level become of the same level, the output state is cut off for a certain time by inverting the comparator. During this cutoff time, the current volume decreases slightly due to the L component of the motor and falls short of the comparative level. During the time fixed based on the PWM frequency, the output stage goes in ON state and then in OFF state and this ON/OFF operation is repeated.

(5) PWM oscillator

A capacitor Cf is externally connected to CT pin in order to fix the PWM oscillator frequency. The frequency f_c is calculated as follows.

$$f_{\rm c} = \frac{1}{7.77 \ x \ 10^3 \ x \ C_{\rm f}}$$

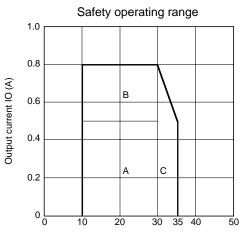

(6) Analog control


The output current level can be continuously changed by changing the voltage at VR or the feedback voltage to the comparator.

(7) Thermal shutdown function

This IC has a function to protect itself against thermal damage which is caused when the chip temperature rises abnormally. Regarding this function, refer to "PRECAUTIONS FOR USE."

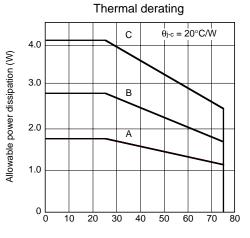
TIMING CHART



M54670P

2-PHASE STEPPER MOTOR DRIVER

TYPICAL CHARACTERISTICS (ABSOLUTE MAXIMUM RATINGS)



Output Vмм (V)

B : Schottky diodes should be externally connected between output pin and power supply pin.

 ${\sf C}$: Schottky diodes should be externally connected between output pin and power supply pin and between output pin and GND pin.

Ambient (°C)


- A : Free air ($\theta_{c-a} = 50^{\circ}C/W$)
- B : With 10cm² aluminum heat $(\theta_{c-a} = 25^{\circ}C/W)$
- $\begin{array}{l} C: With \ 100 cm^2 \ aluminum \ heat \\ (\theta_{c\text{-}a} = 10^\circ C/W) \end{array}$

Tj(max) = 150°C

MITSUBISHI <CONTROL / DRIVER IC>

M54670P

2-PHASE STEPPER MOTOR DRIVER

APPLICATION EXAMPLE (Stepping motor driver)

2-PHASE STEPPER MOTOR DRIVER

PRECAUTIONS FOR USE

- (1) When the whole output current changes by a large margin (for example, when thermal shutdown operation causes intermittent flow of output current), the supply voltage may undergo a change. Therefore, selection and wiring of power supply should be conducted cautiously to avoid such a situation that the supply voltage exceeds the absolute maximum ratings.
- (2) When the supply voltage changes by a large margin, the operation of this IC may become unstable. In this case, the change of supply voltage can be controlled by connecting a capacitor between Vcc pin and GND pin.
- (3) Thermal shutdown function

The state of thermal shutdown operation may differ according to the way of wiring within a board. Therefore, sufficient board evaluation should be conducted before use. When the board is changed, operation on the replacing board should be evaluated. The circuit board on which this IC is mounted is designed to realize low impedance between power supply and output pin. Therefore, it is desirable to take a safe measure such as fixing a fuse to avoid such a situation that the board is damaged by a fire when output pin is internally short-circuited by excessively applied surge voltage by accident.